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Introduction 

During the last years biology and computer science have been characterized by major 

advances that have attracted a lot of interest. Nowadays the collaboration between 

biologists and computer scientists is deemed a vital necessity for the further progress of 

biological research. Bioinformatics is a novel research area that has emerged as a solution 

to the aforementioned need for collaboration. Two relative subfields of computer science, 

data mining and machine learning, have provided biologists, as well as experts from other 

areas, a powerful set of tools to analyze new data types in order to extract various types 

of knowledge efficiently and effectively. These tools combine powerful techniques of 

artificial intelligence, statistics, mathematics, and database technology. This fusion of 

technologies aims to overcome the obstacles and constraints posed by the traditional 

statistical methods. 

Association rules mining has attracted the attention of the data mining research 

community since the early 90s, as a means of unsupervised, exploratory data analysis. 

Association rules were first introduced by Agrawal et al. (1993) as a market basket 

analysis tool, however since then, they have been effectively applied to many other 

application domains, including biology and bioinformatics. An association rule implies 

the co-existence of a number of items in a portion of a transaction database. The goal of 

this exploratory data analysis is to provide the decision maker with valuable knowledge 

about a certain domain modeled by a transaction database. The frequent existence of two 

or more items in the same transaction implies a relationship among them. For example, 

the existence of bread and butter in the same baskets implies a possible buying behavior 

pattern that can be further investigated in order to improve the sales of both products. 

Similarly, the co-existence of high expression values of a number of genes in the same 

transactions-experiments indicates a possible co-expression pattern of these genes. 

Conversely, the rare or the absolutely non-co-existence of two products could also imply 

a negative association (e.g. a mutual exclusion) among them. 
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Many algorithms for mining association rules and others that extend the concept 

of association rules mining have been proposed so far. Agrawal and Srikant (1994) 

proposed Apriori, the first algorithm for mining association rules. Apriori is a level-wise 

algorithm, which works by generating candidate sets of items and testing if they are 

frequent by scanning the database. It is one of the most popular data mining algorithms 

and will be described in more detail later in the chapter. About the same time Mannila et 

al. (1994) discovered independently a variation of Apriori, the OCD algorithm. The large 

number of algorithms that have been proposed since then, either improve the efficiency, 

such as FPGrowth (Han et al., 2000) and Eclat (Zaki, 2000), or address different 

problems from various application domains, such as spatial (Koperski and Han, 1995), 

temporal (Chen and Petrounias, 2000) and intertransactional association rules (Tung et 

al., 2003). 

One of the major problems in association rules mining is the large number of 

often uninteresting rules extracted. Some approaches that are based on concept 

hierarchies try to deal with this problem. Srikant and Agrawal (1995) presented the 

problem of mining for generalized association rules. These rules utilize item taxonomies 

(concept hierarchies) in order to discover more interesting rules. Thomas and Sarawagi 

(1998) proposed a technique for mining generalized association rules based on SQL 

queries. Han and Fu (1995) also describe the problem of mining “multiple-level” 

association rules, based on taxonomies and propose a set of top-down progressive 

deepening algorithms. 

Another kind of approaches deal with negative associations between items. 

Savasere et al. (1998) introduced this kind of problem. Negative associations relate to the 

problem of finding rules that imply what items are not likely to appear in a transaction 

when a certain set of items appears in the transaction. The approach of Savasere et al. 

demands the existence of a taxonomy and is based on the assumption that items 

belonging to the same parent of taxonomy are expected to have similar types of 

associations with other items. In another work Wu et al. (2004) presented an efficient 

method for mining positive and negative associations and proposed a pruning strategy 

and an interestingness measure. Finally, another kind of negative associations that has 

been studied concerns the mining of mutually exclusive items (Tzanis et al., 2006; Tzanis 

and Berberidis 2007). 

The process of Knowledge Discovery from Databases (KDD Process) consists of 

a number of steps that can be grouped in three categories: pre-processing, data mining 

and post-processing (Figure 1). Although the core of the process is the data mining step, 

where a data mining algorithm (e.g. Apriori for mining of association rules) is applied, 

the pre-processing and post-processing phases are particularly important and contribute 
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sensibly to the extraction of valuable knowledge. The pre-processing phase usually 

includes the selection of an appropriate portion of the data, the cleaning of the selected 

data and the transformation of the data. The post-processing phase deals with the 

management of the produced patterns and focuses on the evaluation and interpretation of 

data mining results. 

 
Figure 1. The Knowledge Discovery in Databases (KDD) process. 

 

The central dogma of molecular biology, as coined by Francis Crick (1958), 

describes the flow of the biological information (Figure 2). In most organisms DNA is 

transcribed into RNA and then RNA is translated into protein. The circular arrow around 

DNA denotes its ability to replicate itself. The figure describes also the basic kinds of 

data that can be produced by various biological experiments in relation to the three basic 

molecules of life.  

 
Figure 2. The central dogma of molecular biology and the main kinds of biological data. 

 

It is important to mention that association rules mining is a very prominent tool in 

application domains that include a large number of binary attributes and the associations 

among these attributes could be meaningful. A convenient application domain in biology 
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is gene expression data, which include a large number of attributes (genes) and the 

associations among different genes are often particularly important. Although the 

expression values of genes are not binary, an appropriate discretization algorithm can 

convert these values to a suitable format for applying an association rules mining 

algorithm successfully. Even though gene expression data are quite convenient for 

association analysis, association rules mining is also applied to other kinds of biological 

data. These applications will be presented in following sections.  

In the next section, the problem of mining association rules will be defined. Then, 

some important mining algorithms, pre-processing and post-processing methods will be 

described. In the rest sections, the application of association rules mining algorithms to 

various kinds of biological data will be presented. Finally, the chapter will be concluded 

and summarized.  

Definition of the Association Rules Mining Problem 

The original definition of the association rules mining problem has been given by 

Agrawal et al. in 1993. Let I = {i1, i2, …, iN} be a finite set of binary attributes called 

items and D = {t1, t2, …, tN} be a finite multiset of transactions, which is called the 

database. Each transaction ti contains a subset of items chosen from I and has a unique 

transaction ID. A set of items is reffered to as an itemset. If an itemset contains k items, it 

is called a k-itemset. The number k is called size or length of the itemset. The itemset that 

does not contain any items is called an empty itemset. A transaction TD is said to 

contain an itemset XI, if XT.  

An association rule is an implication of the form XY where XI, YI and 

XY=. The itemset X is called antecedent or left-hand-side (LHS) of the rule and the 

itemset Y is called consequent or right-hand-side (RHS) of the rule.  

There are many measures that have been proposed in order to evaluate a rule’s 

interestingness. The most popular are support and confidence. They respectively reflect 

the usefulness and certainty of discovered rules. More specifically, support determines 

how often a rule is applicable to a given dataset, whereas confidence determines how 

frequently items in Y appear in transactions that contain X. The support of a rule XY is 

equal to the support of the itemset XY and is defined as the fraction of transactions in 

the database which contain the itemset. The support of an itemset X is calculated as 

presented in the following equation: 
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 The confidence of the rule XY is defined as the fraction of transactions in 

database that contains XY over the number of transactions that contain only X. In other 

words, confidence is equal to the fraction of the support of XY in D, over the support of 

X in D. The equation that defines confidence is presented below:  
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In order to make the concepts presented above more clear, a detailed example is 

going to be presented. Table 1 presents a binary data matrix (database) concerning the 

expressions of four genes. Every transaction represents a separate measurement of gene 

expression levels. All measurements have been discretized so that only two levels of gene 

expression are possible. A value of zero represents a gene that is underexpressed, 

whereas a value of one represents a gene that is overexpressed. 

Table 1. Example of a binary gene expression matrix. 

Transaction ID Gene1 Gene2 Gene3 Gene4 

T1 0 1 0 0 

T2 0 0 0 1 

T3 1 1 0 0 

T4 0 0 1 0 

T5 1 1 1 0 

 

In this example the set of items is I={Gene1, Gene2, Gene3, Gene4}. In the 

database there are five transactions e.g. t3={Gene1, Gene2}. An example of a rule for this 

database could be {Gene1, Gene2}  {Gene3}. The support for this rule is 1/5 (20%), 

because only one transaction (t5) out of five contains Gene1, Gene2 and Gene3. The 

confidence of the rule is 1/2 (50%), because the support of itemset {Gene1,Gene2} (the 

antescedent of the rule) is 2/5 and the support of the itemset {Gene1, Gene2, Gene3} is 

1/5.  

The association rules mining problem can be decomposed in two major subtasks: 
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1. Frequent Itemset Generation. Its purpose is to find all itemsets that satisfy a user-

specified minimum support threshold (min_sup). These itemsets are called frequent 

itemsets. 

2. Rule Generation. Its purpose is to extract from the frequent itemsets all the rules that 

satisfy a user-specified minimum confidence threshold (min_conf).  

The first subtask is the more computationally complex and has concentrated all 

the focus of the research community. The second subtask is a straightforward task and 

does not attract the interest of researchers.  

Algorithms for Mining Association Rules 

In this section three popular algorithms that are based on three main methodologies for 

mining all frequent itemsets and consequently association rules will be presented. 

Apriori 

Most of the algorithms for mining frequent itemsets are based on the principle of 

downward closure. This principle imposes that all non-empty subsets of a frequent 

itemset are also frequent. For example, if itemset {Gene1, Gene2, Gene5} is frequent 

according to a minimum support threshold, then itemsets {Gene1, Gene2}, {Gene1, 

Gene5}, {Gene2, Gene5}, {Gene1}, {Gene2}, and {Gene5} must also be frequent 

according to the same minimum support threshold. The most popular algorithm that 

employs this principle is Apriori (Agrawal and Srikant, 1994).  

Apriori works by constructing candidate frequent itemsets and then checks which 

of them are indeed frequent (Table 2). For the generation of candidate k-frequent 

itemsets, the set of (k-1)-frequent itemsets is exploited according to the principle of 

downward closure. Thus, the process of frequent itemsets mining in Apriori is a two step 

process: 

3. The set of candidate frequent itemsets Ci is constructed.  

4. Then the set of frequent itemsets Li
 is constructed by scanning the database and 

checking which candidates in Ci using the minimum support threshold. 

To clarify the process, the algorithm initially constructs all the candidate frequent 

1-itemsets (C1), which actually include all the items. Then it is checked by scanning the 

database whether the minimum support threshold is satisfied for these candidates and so 
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the set of frequent 1-itemsets (L1) is generated. Next, L1 is used in order to generate the 

set of candidate frequent 2-itemsets (C2), exploiting the downward closure principle. 

Following the same process the 2–frequent dataset (L2) is generated. The process ends in 

a specific number of iterations, or when there are no more candidate frequent itemsets. 

The number of Apriori’s database scans is equal to the length of the longest candidate 

frequent. 

Table 2. Pseudocode of the Apriori algorithm. 

Input: Database D, minimum support threshold (min_sup) 

Output: All the frequent itemsets 

L1 ← {frequent items} 

for (k ← 2; Lk-1!=∅; k++) do 
    Ck ← {candidates from Lk-1} (Lk-1 × Lk-1 and downward closure) 

    for each t  D do 

        for each c  Ck do 

            if (c  t) 
                c.count++ 

    Lk ← {c  Ck | c.count ≥ min_sup}  

return  k
k

L  

FP- Growth  

The main drawbacks of the Apriori algorithm is that not only generates a huge number of 

candidate itemsets, but also scans the database several times. Both drawbacks are very 

costly. In 2000, Han et al. proposed an algorithm, called FP-Growth that is not based on 

the generation of candidate frequent itemsets. In general, the algorithm uses a tree 

structure, the FP-Tree (Frequent Pattern Tree), which stores all the database. This 

structure can compress the data up to 200 times and it is stored to the computer’s 

memory, which leads to a more effective rule extraction. Moreover, this algorithm uses a 

divide and conquer approach in order to decompose the rule extraction process in simpler 

parts. 

More specifically, in the first step, the algorithm compresses the database into an 

FP-Tree structure that is highly condensed, but is complete for the purposes of frequent 

pattern mining. The beneficial consequent is that it avoids costly database scans during 

candidate generation. Then, in the second step, it extracts frequent itemsets directly from 
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the FP-Tree using the divide and conquer methodology. Generally FP-Growth is faster 

than Apriori.  

Eclat 

In 2000, Zaki proposed a new algorithm for mining frequent patterns, called Equivalence 

CLASS Transformation (Eclat). The main difference between the two algorithms 

presented previously and Eclat is that the first two mine frequent itemsets from a set of 

transactions in horizontal data format while Eclat mines frequent itemsets in a vertical 

data format. 

Firstly, the algorithm builds the TID_set of all items in the transaction database. 

Likewise Apriori, in Eclat the frequent k-itemsets are generated from the frequent (k-1)-

itemsets. In order to clarify the process, an example is presented below. In this example 

the minimum support threshold is set to 20%. Table 3 presents the transaction database in 

which the first column represents the Transaction ID and the second the items included in 

each transaction.  

Table 3. Example of a transaction database. 

TID List of Items IDs 

T1 I4,I5 

T2 I1,I3,I4,I5 

T3 I1,I3,I5 

T4 I3,I4 

T5 I3,I4 

T6 I4,I5 

T7 I2,I3,I5 

T8 I2,I5 

T9 I3,I4,I5 

 

Table 4 presents the transactional database of Table 3 in vertical data format. The 

first column represents the itemset and the second column present the transactions which 

contain the particular itemset.  

By intersecting the TID_set the frequent 2-itemsets (highlighted) in Vertical data 

format are generated. These itemsets are presented in Table 5. 
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Table 4. The transactional database of Table 3 in vertical data format. 

Itemset TID_set 

{I1} T2,T3 

{I2} T7,T8 

{I3} T2,T3,T4,T5,T7,T9 

{I4} T1,T2,T4,T5,T6,T9 

{I5} T1,T2,T3,T6,T7,T8,T9 

Table 5. The frequent 2-itemsets (highlighted). 

Itemset TID_set Support 

{I1,I3} T2,T3 22% 

{I1,I4} T2 11% 

{I1,I5} T2,T3 22% 

{I2,I3} T7 11% 

{I2,I5} T7,T8 22% 

{I3,I4} T2,T4,T5,T9 44% 

{I3,I5} T2,T3,T7,T9 44% 

{I4,I5} T1,T2,T6,T9 44% 

 

Again by intersecting the TID_sets the frequent 3-itemsets (Table 6) in Vertical 

Data Format are generated. An optimization based in the principle of downward closure 

is that there is no need to intersect {I1,I5} and {I4,I5} because {I1,I4} is not frequent and 

as a concequent {I1,I4,I5} cannot be frequent.  

Table 6. The frequent 3-itemsets. 

Itemset TID_set Support 

{I1,I3,I5} T2,T3 22% 

{I3,I4,I5} T2,T9 22% 

 

The process ends, when there are no more candidate frequent itemsets or frequent 

itemsets. 

Pre-processing and Post-processing 

As previously discussed, data pre-processing is an essential step before applying a data 

mining algorithm. The pre-processing phase usually includes the selection of an 

appropriate portion of the data, the cleaning and the transformation of the data. In 

association rules mining problems the most necessary and most frequently used pre-
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processing procedure is discretization, which involves the transformation of the 

continuous range of an attribute’s values to discrete intervals.  

Discretization 

Many algorithms in Data Mining and the vast majority of the association rules discovery 

algorithms and their derivations work only with categorical attributes. So it is essential to 

use data discretization techniques in order to reduce the number of values for a given 

continuous attribute by dividing the range of the attribute into intervals. In other words 

the aim of discretization techniques is to convert the numeric attributes into nominal 

ones. There are three axes by which discretization methods can be classified: global/ 

local, supervised/unsupervised, and static/dynamic (Dougherty et al., 1995).  

Local discretization algorithms produce partitions that are applied to localized 

regions of the instance space. Instead, global algorithms group values of each feature into 

intervals by considering other features. Supervised discretization algorithms are 

applicable only when the data are divided into classes. On the other hand, unsupervised 

algorithms do not consider the class value. Lastly, static algorithms discretize each 

feature in one iteration independent of the other features, whereas dynamic algorithms 

search for all possible intervals for all features simultaneously. In the rest of this section 

some of the most popular discretization strategies will be presented, according to the 

second categorization (supervised/usupervised). 

Supervised discretization is used when dealing with classification problems or a 

dataset in which a label attribute is assigned to each instance. This label indicates the 

class in which the instance belongs to. This information is used to guide the discretization 

process. The most well known approach for supervised discretization is the one proposed 

by Fayyad and Irani in 1992. This method uses the Information Gain in order to 

recursively define the best bins. The entropy of each bin should be minimal. The method 

works by recursively splitting the intervals until a stopping criterion is reached.  

Let S be a training set. All instances in the training set should belong to one of c 

different classes. Each class is denoted by a number from 1 to c. Considering the above, 

entropy Ε of the set S is defined by the following equation: 

2
1

( ) log ( )


 
c

i i
i

E S p p
 

In the above equation, pi is the fraction of instances in S that belong to class ci. The 

entropy of S decreases when the homogeneity of S with respect to the class where each 
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instance belongs increases. For example, entropy is zero when all instances belong to the 

same class. On the contrary, entropy increases when the homogeneity of the instances 

decreases. By definition, if pi is zero, then the term 2log ( )i ip p  is also equal to zero. 

Let T = {t1, …., tN} be an arranged set of N split points for the values of an 

attribute A, which splits the training set S into N+1 subsets {S1,…., SN+1}. Then, 

information gain G is defined by the following equation: 

1

1

( ; , ) ( ) ( )
N

i
i

i
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Information gain measures the reduction of the entropy which is caused if the 

values of attribute A are divided in the N+1 intervals which are generated from the N split 

points of included in T. The main purpose is the minimization of the heterogeneity among 

the instances that belong to the same interval of the attribute values. In other words, from 

the candidate splits of the dataset, the one which minimizes the entropy and maximizes 

the information gain should be chosen.  

On the contrary, unsupervised discretization is used in the absence of any 

knowledge of the class memberships of the instances. Thus, unsupervised discretization 

methods are generally based on the distribution of attribute values. The basic and 

simplest unsupervised strategy is the Equal Interval Width discretization, which divides 

the values of the attribute into k equal bins, where k is a user-specified parameter. This 

method is vulnerable to outliers, namely observations that are numerically distant from 

the data, that may skew the range. 

Another basic and simple unsupervised strategy is the Equal Frequency Intervals 

discretization, which divides a continuous attribute into k intervals which include the 

same number of values. Each interval contains n/k bins where n is the number of values.  

These methods are rather simple but have some drawbacks, which are very 

important in association rule mining (Vannucci and Colla, 2004). First of all, 

discretization must reflect the original distribution of the attribute. Second, discretization 

intervals should not hide the association and the patterns which exist in the values and 

last, intervals should be semantically meaningful and must make sense to human experts. 

Some interesting approaches, which take under consideration the drawbacks 

mentioned before, have been proposed. Three methods that can be grouped under the 

term threshold methods, because they calculate a threshold which helps the discretization 

process are presented below. These methods (Becquet et al., 2002) were used for 

discretizing gene expression data that were produced using the serial analysis of gene 

expression (SAGE) method (Velculescu et al., 1995).  
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The first discretization method is called max minus x% and includes the 

identification of the highest expression value (max) initially and then, the replacement of 

each value that is greater than max-x/100 with the value of one and the replacement of all 

other values with the value of zero. 

The second approach is the mid-range-based cutoff. This consist of identifying the 

highest and lowest expression values for each gene and then the calculation of their 

arithmetic mean. All expression values below or equal to the arithmetic mean are set to 

zero and all the expression values exceeding the arithmetic mean are set to one. 

The last method is x% of highest value. This consists of finding the x% of the 

highest values and replacing them with the value of one. The rest ones are assigned with 

the value of zero.  

In 2004, Vanucci and Colla proposed an unsupervised discretization method for 

dicretizing data for the purposes of association rules mining. The main thought is to 

preserve the original sample distribution. One idea was to use the K–means algorithm in 

order to generate a K number of partitions which reflect the original distribution of the 

partitioned attribute. The main drawback of using the K–means algorithm was that the 

results obtained was very sensitive to the value of K because the value must be given by 

the user before the execution of the algorithm. So a false estimation of the K value could 

lead to unsatisfactory results. To overcome this disadvantage a Self-Organizing Map 

(SOM) (Kohonen, 1990) can be used. The SOM also preserves the initial distribution. 

The basic advantage of SOMs is that the number of clusters that will be generated is not 

required to be known in advance, as in the case with K-means. The only parameter that 

should be given before the execution of the algorithm is the maximum number of clusters 

(intervals).  

An interesting approach in discretizing continuous attributes for association rule 

mining was proposed by Ludl and Widmer in 2000. The algorithm RUDE (Relative 

Unsupervised DiscrEtization) combines aspects of both supervised and unsupervised 

discretization. The method does not require a class attribute, hence it belongs to 

unsupervised methods. Furthermore, the split points for an attribute are constructed in 

dependence of the other attributes, hence it is called relative. The basic idea when 

discretizing a particular attribute (the target attribute) is to take in consideration 

information about the distribution of the values of the other attributes (source attributes). 

Post-Processing of Association Rules 

As already mentioned in the introduction, the large number of association rules that are 

discovered poses a great challenge in the data mining research community. The vast 
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amount of generated rules makes interpretation much more complex and often guides to 

misleading conclusions and consequently to wrong decisions. The assessment of the 

usefulness of the generated rules becomes an essential necessity and introduces the need 

to effectively deal with various kinds of redundant and uninteresting data. 

Post-processing usually consists of four steps, pruning, summarizing, grouping, 

and visualization (Baesens et al., 2000). In the pruning phase, rules are deleted because 

they are uninteresting or redundant. The summarizing phase tries to summarize the rules 

into more general concepts (using usually taxonomies). Then, the remaining rules are 

grouped into rule packets in the grouping phase. Finally, the extracted useful knowledge 

is illustrated in a visualization phase. Often the distinction among these phases is not very 

strict and there are major interactions among each other. However, they comprise 

different steps that could be integrated in any post-processing procedure. 

Gene Expression Data Mining 

Gene expression is the process by which the genetic information encoded in DNA is 

converted into a functional broduct that can be either a protein, or an RNA molecule in 

the case of non-protein coding genes such as rRNA or tRNA genes.  

Each organism contains a number of genes that code the synthesis of an mRNA or 

protein molecule. Every cell in an organism -with only few exceptions- has the same set 

of chromosomes and genes. However, two cells may have very different properties and 

functions. This is due to the differences in abundance of proteins. The abundance of a 

protein is partly determined by the levels of mRNA which in turn are determined by the 

expression levels of the corresponding gene.  

A popular tool for the measurement of gene expression is microarray (Schena et 

al., 1995). A microarray experiment measures the relative mRNA levels of thousands of 

genes, providing the ability to compare the expression levels of different biological 

samples. These samples may correlate with different time points taken during a biological 

process or with different tissue types such as normal cells and cancer cells (Aas, 2001). 

Another method for measuring gene expression is Serial Analysis of Gene Expression 

(SAGE), which allows the quantitative profiling of a large number of mRNA transcripts 

(Velculescu et al., 1995). Although this method is more expensive than microarrays, it 

has the advantage that the experimenter does not have to preselect the mRNA sequences 

that will be studied. 

The gene expression data are represented by an M×N matrix (Table 7). Biologists 

conduct a number of experiments measuring gene expression levels of a cell or group of 

cells under various conditions affecting these expression levels (Tuzhilin and 
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Adomavicius, 2002). The M of the matrix represent the samples (e.g. microarray 

experiments, or SAGE libraries), which can be related to the type of tissue, the age of the 

organism or the environmental conditions. The N columns represent all the genes. The 

values included in the cells of the matrix are either counts of mRNA molecules (SAGE), 

or ratios that indicate the variance between the expression of the respective gene in the 

particular sample and the expression of the same gene in a control sample (microarrays).  

Table 7. A typical gene expression matrix. 

 Gene 1 Gene 2 … Gene N

Sample 1 a11 a12 … a1N 

Sample 2 a21 a22 … a2N 

… … … … … 

Sample M aM1 aM2 … aMN 

 

Although the results of the experiments are expressed as real numbers, biologists 

are usually not interested in those values. These values are used in comparison to normal 

expression levels in an organism. For that reason, the absolute values are normalized 

under certain normalization criteria and discretized according to certain predetermined 

thresholds. After this process the values are grouped under three different levels, 

unchanged, upregulated (or overexpressed) and downregulated (or underexpressed). 

The most common way to mine frequent patterns from a set of transactions is 

when these transactions are in horizontal data format, i.e {TID: Itemset}, where TID is 

the transaction id and Itemset is the set of items found in that transaction. Another way to 

mine frequent items (see Eclat algorithm) is when the data are in the vertical format, i.e. 

{item: TID_set}. Table 8 presents an example database in both horizontal and vertical 

format. The vertical data format is popular in application domains, where the data consist 

of many features (items) and a few samples, as is the case with gene expression data. 

Table 8. Horizontal and vertical data format. 

Horizontal Format  Vertical Format 

TID Items  Items TID_set

1 G1, G3 G1 1,4

2 G2, G4,G5 G2 2,4

3 G4,G5 G3 1

4 G1,G2,G5 G4 2,3

  G5 2,3,4
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Mining in Horizontal Data Format 

As mentioned before, the most popular association rules mining algorithm is Apriori. A 

detailed example of the application of Apriori on gene expression data is presented 

below.  

In this example the minimum support threshold (min_sup) is set to 40% and the 

minimum confidence threshold (min_conf) is set to 80%. The matrix presented in Table 9 

is a discretized gene expression matrix. A value of zero represents a gene that is 

underexpressed, whereas a value of one represents a gene that is overexpressed. The 

samples that represent various experimental conditions Ci are in rows, whereas the genes 

Gj are in columns. Moreover, the data are transformed in transactional format. 

Table 9. Discretized gene expression matrix that is converted in transactional format. 

 G1 G2 G3 G4 



TID Items 

C1 1 0 0 0 C1 G1 

C2 1 1 0 0 C2 G1,G2 

C3 1 0 1 1 C3 G1, G3,G4 

C4 1 1 1 1 C4 G1G2,G3,G4 

C5 1 1 1 0 C5 G1,G2,G3 

C6 0 0 1 1 C6 G3,G4 

C7 0 1 1 1 C7 G2,G3,G4 

C8 0 1 0 1 C8 G2,G4 

C9 0 1 1 0 C9 G2,G3 

C10 0 1 1 1 C10 G2,G3,G4 

 

 In the first step of Apriori algorithm, the support of every single gene (item) is 

calculated, and the genes that satisfy the minimum support threshold constitute the set of 

frequent 1-itemsets. The support for every gene in Table 9 is presented below: 

 support({G1}) = 5/10 = 50%  min_sup 

 support({G2}) = 7/10 = 70%  min_sup 

 support({G3}) = 7/10 = 70%  min_sup 

 support({G4}) = 6/10 = 60%  min_sup 

Consequently the set of frequent 1-itemsets contains all the genes: L1={G1, G2, G3, G4}.  

In the next step, Apriori generates all the pairs of genes using L1. The set of 

candidate frequent 2-itemsets is C2 = {{G1, G2}, {G1, G3}, {G1, G4}, {G2, G3}, {G2, 

G4}, {G3, G4}}. After the construction of C2, the support of each pair is calculated by 
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scanning the database and counting the appearance of the pairs in each transaction. The 

support for every candidate frequent 2-itemset is presented below:  

 support({G1, G2}) = 30% < min_sup 

 support({G1, G3}) = 30% < min_sup 

 support({G1, G4}) = 20% < min_sup 

 support({G2, G3}) = 50%  min_sup 

 support({G2, G4}) = 40%  min_sup 

 support({G3, G4}) = 50%  min_sup 

Only three out of the six pairs of genes have support greater than or equal to the 

threshold (40%). Consequently the set of frequent 2-itemsets is L2={{G2, G3}, {G2, G4}, 

{G3, G4}}.  

In the next step, from the L2 will arise the C3, the set which contains all the 

candidate frequent 3-itemsets. Since the items included in each itemset are ordered 

according to their ID, then only the itemsets that have the first item in common are 

merged in order to provide the candidate frequent 3-itemsets. So by merging {G2, G3} 

and {G2, G4} the 3-itemset {G2, G3, G4} arises that is the only candidate. Moreover, all 

the subsets of this itemset are frequent, since they are included in L1 and in L2, so this 

itemset is not pruned due to violation of the downward closure principle. So C3={{G2, 

G3, G4}}. Next, the support of this itemset is calculated by scanning the database. Its 

support is equal to 30%, which is below the minimum support threshold. As a result, L3 is 

an empty set (L3={}), thus the frequent itemsets mining procedure terminates. 

The next step of the Apriori algorithm include the generation of the rules which 

occur from L2 and then the calculation of the confidence for every rule in order to 

determine which ones satisfy the minimum confidence threshold: 

 {G2, G3} 

o G2  G3 = 5/7 = 71% < min_conf (discarded) 

o G3  G2 = 5/7 = 71% < min_conf (discarded)  

 {G3, G4} 

o G3  G4 = 5/7 = 71%  min_conf (discarded) 

o G4  G3 = 5/6 = 83%  min_conf (accepted) 

 {G2, G4} 

o G2  G4 = 4/7 = 57%  min_conf (discarded)  

o G4  G2 = 4/6 = 66% < min_conf (discarded). 

Finally, only one rule is generated (G4  G3). It is very clear that if the minimum 

confidence threshold had been set to 70% then four rules would have been generated. 
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This indicates that it is very important to make a careful choice of the interestingness 

measures (e.g. support and confidence) thresholds before mining the association rules. 

The association rule that was generated could mean that when gene4 (G4) is 

overexpressed then it is also likely, with a high possibility (83%), that gene3 (G3) is also 

overexpressed.  

The majority of frequent pattern mining algorithms are based on the Apriori’s 

candidate generation procedure. The main drawback of these methods is the high 

computational cost of the evaluation of all candidates. For this reason a lot of algorithms 

that are inspired by the FP-Growth algorithm and exploit the use of a tree structure have 

been proposed. Kotala et al., (2001) proposed a method for mining microarray data using 

Peano Count Trees (P-Trees). This method treats the microarray data as spartial data. 

Two interesting approaches which are based on the frequent closed pattern idea 

are CLOSET+ and CHARM. The definition of a closed pattern as is given by Han et al, 

(2007), states that a is a closed frequent pattern in a database D if a is frequent in D and 

there exists no proper super-pattern b such that b has the same support as a in D. Mining 

closed itemsets provides an interesting alternative to mining frequent itemsets, because it 

generates a much smaller set of results and so it is achieved better scalability and 

interpretability. 

Mining in Vertical Data Format 

As already mentioned before, gene expression data usually contain a very large number 

of columns, which represent the genes, in comparison to rows which are the experiments. 

For example, a gene expression matrix may contain 10000 – 100000 columns but only 

100 – 1000 rows. As a result, it became obvious that the methods which use the 

horizontal data format for these dataset are not very suitable. Thus, many new algorithms 

where proposed in order to handle high dimensional data, such as gene expression data, 

in vertical data format. 

The first algorithm designed to handle a microarray dataset in vertical data 

format, was CARPENTER (Pan et al., 2003). CARPENTER discovers frequent closed 

patterns by performing depth-first row-wise enumeration instead of the conventional 

feature (column) enumeration. Furthermore, pruning techniques, are used in order to 

optimize the algorithm’s efficiency.  

Another approach (FARMER) has been proposed by Cong et al., in 2004. 

FARMER finds interesting rule groups and builds classifiers based on them. The concept 

of rule groups imply that rules supported by exactly the same set of rows are grouped 

together. FARMER is designed specifically to generate rules of the form XC, where X 
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is a set of genes and C is a class label. For that reason, each experiment in microarray 

data should be related to a class label, such as cancer or non-cancer. 

Pan and his colleagues extended the CARPENTER algorithm in order to handle 

datasets with both large number of columns and rows. The algorithm, which is called 

COBBLER (Pan et al., 2004), switches dynamically between column and row 

enumeration based on estimated cost of processing. Moreover, COBBLER is more 

efficient than the previously mentioned algorithms: CHARM, CLOSET+, and 

CARPENTER. 

Finally, another interesting approach was proposed in 2006 by Liu et al. They 

developed an algorithm, TD-CLOSE to find the complete set of frequent closed itemsets. 

The main difference with the existing approaches is that TD-CLOSE adapts a top-down 

row-enumeration search strategy, which enables the use of the minimum support 

threshold, to prune the search space dramatically. 

Sequential Data Mining 

The technological advances of the last decades have driven to the collection of vast 

amounts of biological sequences. After the completion of genome sequencing projects, 

the sequenced genomes have to be analyzed and annotated. The observed paradigm shift 

from static structural genomics to dynamic functional genomics (Houle et al., 2000) and 

the assignment of functional information to known sequences is considered particularly 

important. Gene prediction is the step that usually follows sequencing and is concerned 

with the identification of stretches of DNA that are biologically functional. As it is not a 

straightforward task, especially for the more complex eukaryotic genomes, requires the 

use of advanced techniques including data mining.  

For example, eukaryotic genes consist of coding parts (exons) that are separated 

by intervening non-coding sequences called introns. Introns are removed from the 

transcribed RNA sequence by the process of splicing. The recognition of the splice sites, 

namely the boundaries between adjacent exons and introns, is a difficult problem that 

exploits data mining methods. The problem becomes even more challenging, if one 

considers the possibility of alternative splicing, that is the production of different mature 

mRNA molecules, depending on the number of the exons that are finally concatenated.  

Other important sequence analysis tasks are the prediction of regulatory regions 

(i.e. promoters and enhancers), which are segments of DNA where regulatory proteins 

bind preferentially and thus control gene expression and consequently protein abundance. 

The prediction of the transcription start site, where transcription of DNA to RNA starts, 

the prediction of translation initiation site, where translation of mRNA to protein initiates 
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and the prediction of polyadenylation sites where a polyA (multiple adenines) tail is 

added at the 3’ end of an mRNA sequence are also some important sequence analysis 

tasks. 

Quite often, around these important sites there are found some signals or patterns 

that appear with variable frequency in each case. These patterns could be exported using 

frequent itemset mining algorithms. Moreover, various patterns or sequence parts that are 

found near to specific sequence signals could be associated to each other using 

association rules. In most cases the representation of a particular biological sequence is 

accomplished by a number of features that should be extracted from this sequence. These 

features usually record the frequencies of some variable length nucleotide patterns. In 

such a case, if a frequent itemset mining algorithm should be used, it is essential to apply 

a discretization method first, in order to transformed the continuous-valued features to 

categorical ones. 

An approach which used association analysis and combining gene expression and 

biological sequences proposed by Icev et al., (2003). In their approach they focused on 

characterization of the expression patterns of genes based on their promoter regions. The 

promoter region contains short sequences called motifs to which may bind gene 

regulatory proteins which possibly control the gene expression mechanisms. The 

Distance-based Association Rule Mining algorithm (DARM) is based on the Apriori 

algorithm. DARM has the ability to involve multiple motifs and to predict expressions in 

multiple cell types. Moreover, association rules in DARM are enhanced with information 

about the distances among the motifs that are present in the rules in order to investigate 

whether the order and spacing of the motifs can affect expression. 

Another kind of frequent patterns that can be used for discriminated two classes 

are the emerging patterns. In a recent study (Tzanis et al., 2011), a method called PolyA-

iEP, which exploits the advantages of emerging patterns as well as a distance-based 

scoring method has been proposed. This method aims to effectively predict 

polyadenylation sites in biological sequences and can be used for both descriptive and 

predictive analysis. 

Emerging patterns (Dong and Li, 1999) are itemsets whose supports increase 

significantly from one dataset to another. Given two datasets D1 and D2, the growth rate 

of an itemset X from D1 to D2 is defined as follows (indices 1 and 2 are used instead of D1 

and D2): 
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Emerging patterns in contrast to other patterns or models are easily interpretable 

and understood. Moreover, emerging patterns, especially those with a large growth rate 

and strength, provide a great potential for discriminating examples of different classes. 

This twofold benefit of emerging patterns makes them a useful tool for exploring 

domains that are not well understood, providing the means for descriptive and predictive 

analysis as well. 

A disadvantage of emerging pattern mining is that the number of emerging 

patterns may be huge, especially when minimum support and minimum growth rate 

thresholds are set very low. Increasing the thresholds is not an ideal solution, since 

valuable emerging patterns may not be discovered. For example, if minimum support 

threshold is set high, then those emerging patterns with a low support, but with a high 

growth rate will be lost. Conversely, if minimum growth rate threshold is set high, then 

those emerging patterns with a low growth rate, but with a high support will be lost. 

There have been proposed some interestingness measures in order to reduce the number 

of mined emerging patterns without sacrificing valuable emerging patterns, or at least 

sacrificing as less as possible. Such an interestingness measure includes a special kind of 

emerging patterns, called Chi Emerging Patterns (Fan, 2004), which are defined as 

follows.  

Given a background dataset D1 and a target dataset D2, an itemset X is called a chi 

emerging pattern, if all the following conditions are true: 

1. 2( ) supp X , where σ is a minimum support threshold. 

2. 1 2( )  gr X , where ρ is a minimum growth rate threshold. 
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3. 1 2 1 2, ( ) ( )   Y X gr Y gr X  

4. 1 | | >1 ( | | = | | -1 ( , ) ),       X Y X Y X chi X YX  where η = 3.84 is a minimum 

chi value threshold and chi(X, Y) is computed using chi-squared test.  

The first condition ensures that the mined emerging patterns will have at least a 

minimum coverage over the training dataset in order to generalize well on new instances. 

The second condition ensures that the mined emerging patterns will have an adequate 

discriminating power. The third condition is used in order to filter out those emerging 

patterns that have a subset with higher or equal growth rate and higher or equal support 

(any itemset has equal or greater support than any of its supersets). Since the subset has 

fewer items, there is not any reason to keep this emerging pattern. Finally, the fourth 

condition ensures that an emerging pattern has a significantly (95%) different support 

distribution in target and background datasets than the distributions of its immediate 

subsets. 

Structural Data Mining 

Structural bioinformatics is the subfield of bioinformatics which is related to the analysis 

and prediction of the three-dimensional structure of biological macromolecules, 

especially for proteins. The application of machine learning and data mining in structural 

bioinformatics is quite challenging, since structural data are not linear. Moreover, the 

search space for most structural problems is continuous, infinite and demands highly 

efficient and heuristic algorithms. 

Important problems of structural bioinformatics that utilize machine learning and 

data mining methods are the RNA secondary structure prediction, the inference of a 

protein’s function from its structure, the identification of protein-protein interactions and 

the efficient design of drugs, based on structural knowledge of their target.  

Machine learning and data mining methods are also applied for protein secondary 

structure prediction. This problem has been studied for over than 35 years and many 

techniques have been developed. Initially, statistical approaches were adopted to deal 

with this problem. Later, more accurate techniques based on information theory, Bayes 

theory, nearest neighbors, and neural networks were developed. Combined methods such 

as integrated multiple sequence alignments with neural network or nearest neighbor 

approaches improve prediction accuracy. 

Secondary structure prediction methods can be divided in four generations 

(Birzele, 2005): First generation methods were based on single amino acid propensities. 

Second generation methods used prospensities of 3 – 51 adjacent residues. The prediction 
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accuracy was at 60%. (Rost, 2001) The accuracy is defined as percentage of residues 

predicted correctly in one of the tree states: helix strand, and other. Third generation 

methods, used information from homologue sequences and machine learning methods. 

Lastly, in fourth generation methods, a matching between secondary and tertiary protein 

structure was used. Using the fourth generation approaches, the accuracy reached around 

77%. Nowadays a great amount of research has been focused on better representations of 

secondary structure features which is believed that will improve significantly the 

prediction accuracy of the algorithms. The better representation is achieved by 

discovering frequent patterns in protein databases. 

An approach to the representation of secondary structure has been proposed by 

Birzele and Kramer (2006). In their approach they used the level-wise search strategy 

(Mannila and Toivonen, 1997), which is a string mining algorithm, in order to find 

frequent patterns in protein databases. From those frequent patterns were extracted 

features in order to be used on the prediction of the secondary structure using Support 

Vector Machines (SVMs). 

Finally, in 2009 Beccerra et al. proposed an algorithm for biological sequence 

feature classification. The approach includes two main features. Firstly, the use of 

association analysis in order to extract interesting relationships hidden in biological 

datasets and secondly, the use of machine learning classifiers trained with the data 

obtained from the association analysis. More specifically, the first feature consists of 

three main phases. First of all, the sequences are scanned as subsequensed of N symbols 

(N-Grams). The N-Grams represent patterns of variable size in the biological sequence 

and they are represented as binary vectors which allow the application of association 

analysis. The second step consists of finding frequent patterns in the sequences. Lastly, 

the third step consist of finding association rules. In this approach the Apriori algorithm 

was used for the association rule extraction process. 

Protein Interactions - Graph Data Mining 

Proteins are the most versatile macromolecules in living systems. They are the building 

blocks from which the cells are assembled, and they constitute most of the cell’s dry 

mass. Proteins not only provide the cell with shape and structure, but also execute nearly 

all its numerous functions (Alberts et al., 2004, Stryer, 1988). Some of their numerous 

and versatile functions are referred below: 

 Function as catalyst in chemical reactions. Enzymes are proteins that increase the 

rates of chemical reactions. 
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 Transport and store other molecules such as oxygen. For example hemoglobin carries 

oxygen to the erythrocytes (red blood cells).  

 Provide mechanical support. For example collagen is the main component of 

connective tissue and is the most abundant protein in mammals.  

 Immune protection. Antibodies are proteins used by the immune system to identify 

and neutralize foreign objects like bacteria and viruses. 

 Generate movement. For instance, myosin in skeletal muscle cells provides the 

motive force for humans to move. 

 Detects and transmits nerve impulses to the cells response machinery. For instance, 

rhodopsin in the retina detects light. 

 Control growth and differentiation. 

It is obvious that proteins have a wide range of functions. In fact a protein almost 

never performs its function in isolation. It should interact with other proteins in order to 

accomplish a certain function. It has been discovered that the vast majority of proteins 

interact with multiple partners (on average six to eight other proteins) and thousands of 

different proteins form intricate interaction networks or highly regulated pathways 

(Panchenco and Przytycka, 2008). The most common way for the representation of these 

networks are as undirected graphs. In these graphs the proteins are represented as nodes 

and the interactions are represented as edges between two nodes (proteins). 

The last years many interactions have been discovered by researchers. This has 

been achieved through new high-throughput methods which have been recently proposed. 

The huge number of interactions discovered have been stored in many databases. 

Xenarios and Eisenberg (2000) have reviewed and presented many of them including 

DIP, BIND, MIPS, PROTEOME, PROTONET, CURAGEN, and PIM.  

Although a huge amount of information are contained in these databases, there are 

several issues associated with them and the most important is the large amount of noise 

that is present in high-throughput interaction data (Pandey et al., 2006). The noise can 

affect the efficacy of the algorithms at the task of function prediction between different 

datasets (Deng et al., 2003). 

Recently, some data mining techniques have been proposed in order to determine 

the reliability of a given interaction. One of them (Pandey et al.,2007) uses the h-

confidence measure (Xong et al., 2006) from the field of association analysis which can 

be used to estimate the similarity between two proteins based on the number of their 

shared neighbors. The importance of using the h-confidence measure for all pairs of 

proteins in this network is twofold. First, it can address the problem of noise in the data 

mentioned before. For instance, when an interaction is already known the h-confidence 

measure between the two particular proteins is low. Secondly, it can also address another 
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important problem of the interaction data, which is the problem of incompleteness. For 

example, if an interaction between two proteins is not known and the h-confidence 

measure for these proteins is high then it is probable that an interaction between those 

two proteins exists. 

Association analysis can be used in order to predict protein functions from a 

protein interaction network. In the context of graphs the frequent patterns are stood for 

the frequent sub graphs in a set of graphs (Kuramoch and Karipis 2004). In the context of 

protein interaction networks a set of graphs may be a set of protein interaction networks 

and frequent patterns (subgraphs) may be functional modules. The discovered network 

modules can be used in many biological applications such as the prediction of the 

function of unknown genes or the construction of the transcription modules. 

Hu et al., (2005) developed an algorithm, called CODENCE, in order to 

efficiently mine frequent coherent dense subgraphs across a large number of massive 

graphs. The two main steps of the algorithm include the construction of a summary graph 

across multiple relation graphs G1…Gn and then the mining of dense summary graphs 

using the MODES algorithm (Hartuv and Shamir 2000). It is worth mentioning that this 

method can integrate heterogeneous network data, such as protein interaction networks, 

genetic interaction networks and co-expression networks to reveal consistent biological 

signals. 

Also, Xiong et al. (2005) proposed a hyperclique pattern discovery approach in 

order to extract functional modules from protein complexes. A hyperclique pattern is a 

type of association pattern that contains highly affiliated proteins, that is every pair of 

proteins in the same hyperclique pattern is guaranteed to have the cosine similarity above 

a certain level. For that reason, if a protein is found to belong in a protein complex then it 

is very probable that the other proteins in the same hyperclique pattern also belong to the 

same protein complex. The h-confidence measure mentioned before is designed to 

capture the strength of this association. The definitions of h-confidence and hyperclique 

pattern are given below according to (Xiong et al., 2005). 

 The h-confidence of a pattern X = {p1, p2, …pm}, denoted as hconf(X), is a measure 

that reflects the overall affinity among proteins within the pattern. This measure is 

defined as min(conf({p1}{p2,p3,…pm}), conf({p2}{p1,p3,…pm}), 

conf({p3}{p1,p2,…pm}),… conf({pm}{p1,p2,…pm-1}), where conf is the 

confidence of association rule. 

 A pattern X is a hyperclique pattern if hconf(X)  hc, where hc is a user specified 

minimum h-confidence threshold. A hyperclique pattern is a maximal hyperclique 

pattern if no superset of this pattern is also a hyperclique pattern. 



Biological Knowledge Discovery Handbook: Preprocessing, Mining and Postprocessing of Biological Data  
Chapter 34 / Ioannis Kavakiotis, George Tzanis, Ioannis Vlahavas  

25

Another approach to the field of protein interaction networks was proposed by 

Besemann et al. (2004), who introduced the concept of differential association rule 

mining to study the annotations of proteins in the context of one or more interaction 

networks. The goal of this technique was to highlight the differences among items 

belonging to different interacting nodes or different networks, something that could not 

be achieved with the standard relational association rule mining techniques. 

Another perspective to the field of protein interaction networks is to find frequent 

sub-networks in a given network in a different manner than in the previously described 

approaches which focused on mining frequent sub-graphs in a set of networks. Such an 

algorithm is NeMoFinder, which was proposed by Chen et al. (2006) and was inspired by 

the Apriori algorithm. 

Text Data Mining 

Text mining in molecular biology, defined as the automatic extraction of information 

about genes, proteins and their functional relationships from text documents (Krallinger 

and Valencia, 2005), has emerged as a hybrid discipline on the edges of the fields of 

information science, bioinformatics and computational linguistics. 

It is critically important for biologists to have access to the most up to date 

information on their field of research. Current research practice involves on-line search 

for gene related information utilizing the latest technologies in Information Retrieval, 

Semantic Web and Text Mining. A new term lately used by bioinformaticians to describe 

the text body where they can extract information such as ontology, interaction and 

function between biological entities is the textome. Generally, it can include all parseable 

and computable scientific text body.  

The rapid progress in biomedical research has led to a dramatic increase in the 

amount of available information, in terms of published articles, journals, books and 

conference proceedings. Pubmed is a free database accessing primarily the MEDLINE 

database of references and abstracts on life sciences and biomedical topics. As of 1st July 

2011, PubMed has over 21 million records. 11,0 milion articles are listed with their 

abstracts and 3,3 milion articles are available full text for free. Every year about 500,000 

new records are added. In total, more than 5,000 journals are currently indexed by 

PubMed. Although PubMed is by far the richest database of abstracts, citations and full 

text articles, there is a plethora of such sources of scientific publications on biology such 

as NCBI BookShelf for e-books and a large number of on-line resources. The 

researchers’ need to exploit this enormous volume of available information, along with 

the avail of high performance and efficiency data mining, natural language processing 
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and information retrieval tools have given birth to a new field of research and application, 

called Bioinformatics Text Mining (BTM). Other terms for BTM are Bio(logical) Text 

Mining and Biomedical Text Mining.  

From a data miner’s point of view, biomedical literature has certain characteristics 

that require special attention, such as heavy use of domain-specific terminology, 

polysemic words (word sense disambiguation), low frequency words (data sparseness), 

creation of new names and terms and different writing styles (Tzanis et al., 2009). 

Several studies have categorized the tasks of BTM from different points of view. 

Cohen and Hersh (2005) provide a high-level categorization, identifying the main tasks to 

be the following: 

 Named Entity Recognition (NER): The goal is to find and classify atomic elements in 

text into predefined categories. 

 Text classification. The goal is to determine whether a document has particular 

characteristics, usually based on whether the document includes certain type of 

information. 

 Synonym and abbreviation extraction. This task deals with the problem that many 

biological entities have multiple names so in biomedical literature are many 

synonyms and abbreviations. 

 Relationship extraction: The goal of relationship extraction is to find a specific type 

of relationship between a pair of entities of given types. 

 Hypothesis generation. The goal is to find relationships that are not present in text but 

they are inferred by other explicit relationships. 

An early work which used association rules for text mining was proposed by 

Hristovski et al., in 2001. The goal of the system they presented was to discover new, 

potentially meaningful relations of a given concept of interest with other concepts that 

have not been published in the medical literature before. All the known relations among 

the concepts came from MEDLINE. Each citation in MEDLINE is associated with a set 

of MeSH (Medical Subject Headings) terms that describe the content of the item in the 

database. The main idea was the use of association rules in order to find all concepts Y 

that are related to the starting concept X. Then, to find all the concepts Z that are related 

to the concept Y. The next step included the examination whether the concepts X and Z 

are found together in the medical literature. If they do not appear, it is possible that a new 

relation has been discovered. The evaluation of the discovered associations was done by 

human experts, laboratory methods or clinical investigations, depending of the nature of 

X and Z. 

Another interesting approach that used association rules for biomedical text 

mining, was proposed by Berardi et al. (2005). The purpose of their method was to detect 
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associations between concepts as indication of the existence of biomedical relation. This 

method also used Medline abstract and the MeSH taxonomy. The hierarchical nature of 

the MeSH taxonomy made it possible to mine multilevel association rules (generalized 

association rules) (Srikant and Agrawal, 1995). Generalized association rules include 

association rules of the form XY, where no item in Y is an ancestor of any item in X in a 

given taxonomy. 

Conclusion 

Frequent patterns and association rules are useful data mining tools that have attracted the 

research interest since 1993 as a means of unsupervised, exploratory data analysis. 

Although they initially proposed as a market basket analysis tool, they almost 

immediately applied to other application domains and nowadays include a large number 

of applications. The community of biologists and bioinformaticians have used association 

rules for analyzing a quite variable set of biological data. Gene expression data, 

biological sequences, biological structural data, protein interaction networks, and 

biological texts are the most popular kinds of biological data that have been effectively 

analyzed using these data mining tools.  

As already done in the past, it is deemed that several new algorithms for mining 

association rules more efficiently, as well as for mining new kinds of patterns and 

extending the concept of association rules will be proposed in the future. All these novel 

association rules mining tools will provide the means for more efficient and effective 

analyses of biological data. As a result, the research efforts of biologists are going to be 

enhanced by the gain of new biological insights and the rise of new biological questions 

that will guide to unexplored research directions. 
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