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Abstract: Mining a transaction database for association rules is 
a particularly popular data mining task, which involves the 
search for frequent co-occurrences among items. One of the 
problems often encountered is the large number of weak rules 
extracted. Item taxonomies, when available, can be used to 
reduce them to a more usable volume. In this paper we 
introduce a new data mining paradigm, which involves the 
discovery of contiguous frequent itemsets. We formulate the 
problem of mining contiguous frequent itemsets in a transaction 
database and we present a level-wise algorithm for finding these 
itemsets. Contiguous frequent itemsets may contain important 
knowledge about the dataset, that can not be exposed by the use 
of classic association rule mining approaches. This knowledge 
may well include serious hints for the generation of a taxonomy 
for all or part of the items. 
 
Keywords - data mining, market basket analysis, frequent 
itemset mining, association rule. 
 

I. INTRODUCTION 
 

Association rule mining has attracted the attention of 
the data mining research community since the early 90s, 
as a means of unsupervised, exploratory data analysis. 
The association rule mining paradigm involves searching 
for co-occurrences of items in transaction databases. Such 
a co-occurrence may imply a relationship among the 
items it associates. These relationships can be further 
analyzed and may reveal temporal or causal relationships, 
behaviours etc. An example of association rule might be 
“90% of the customers that purchase coffee, also 
purchase sugar”.  

Association rules are applied in many domains that 
range from decision support to telecommunications alarm 
diagnosis and prediction [6]. However, the typical 
application of association rules is in analysis of sales data 
referred to as market basket data. Other applications of 
association rules include cross marketing and attached 
mailing applications, catalog design, add-on sales, store 
layout and customer segmentation based on buying 
patterns [6]. 

The formal statement of the problem of mining 
association rules [6] follows. Let I be a finite set of binary 
attributes called items and D be a finite multiset of 
transactions. Each transaction T∈D is a set of items such 
that T⊆ I. A set of items is usually called an itemset. The 
length or size of an itemset is the number of items that 
contains. An itemset of length k is referred to as k-itemset. 

For an itemset A∪B, if B is an m-itemset then B is called 
an m-extension of A. We say that a transaction T∈D 
contains an itemset A⊆ I, if A⊆ T. An association rule is 
an implication of the form A⇒ B, where A⊂ I, B⊂ I and 
A∩B=∅ . A is called the antecedent and B is called the 
consequent of the rule. 

There are two common interestingness measures for 
association rules. The support of an association rule 
A⇒ B is a measure of statistical significance and is equal 
to the support of the itemset A∪B, which is calculated as 
the fraction of the transactions that contain itemset A∪B 
over the total number of transactions in D: 
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The confidence of an association rule A⇒ B is a measure 
of its strength and is equal to the fraction of the 
transactions that contain the itemset A∪B over the 
number of transactions that contain only A. Confidence 
can be calculated as follows: 
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Given a finite multiset of transactions D, the problem 

of mining association rules is to generate all association 
rules that have support and confidence at least equal to 
the user-specified minimum support threshold (min_sup) 
and minimum confidence threshold (min_conf) 
respectively.  

The problem of discovering all the association rules 
can be decomposed into two subproblems [1]: 
1. The discovery of all itemsets that have support at 

least equal to the user-specified minimum support 
threshold. These itemsets are called large or frequent 
itemsets.  

2. The generation of all rules from the discovered 
frequent itemsets. For every frequent itemset F, all 
non-empty subsets of F are found. For every such 
subset S, a rule of the form S⇒ F-S is generated, if 
the confidence of the rule is at least equal to the 
minimum user-specified confidence threshold. 

All the association rule mining approaches so far follow 
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these two steps. The basic module of all approaches is the 
frequent itemset mining algorithm, which is also the most 
computationally intensive module. Moreover, it is 
independent from the rule generation module. Fig. 1 
illustrates the general association rule mining approach. 
 

 
Fig. 1. The general approach for mining association rules. 

One of the major problems of association rule mining 
is how to reduce the number of extracted rules to a small 
number of interesting ones. This can be done by setting  
an appropriate metric, such as the support and the 
confidence to use as a threshold to prune the uninteresting 
rules. Nevertheless, the use of support and confidence 
causes the loss of valuable knowledge. For example, an 
important association rule with very low support will not 
be extracted unless the minimum support threshold is set 
very low. However, by decreasing the minimum support 
threshold a large number of insignificant rules will also be 
produced.  

During the last decade, a large number of algorithms 
have been proposed, in order to improve performance or 
to adjust to new needs and more complex problems. An 
interesting direction concerns a group of algorithms and 
approaches that embed a special kind of item information, 
called conceptual hierarchy or taxonomy. Taxonomies 
exist in various application domains, such as market 
basket analysis and the use of them provides another 
method to extract strong association rules. A taxonomy is 
a conceptual tree, where the edges represent “is-a” 
relationships from the child to the father. Example of such 
a relationship is: “Cheddar is-a Cheese is-a Dairy is-a 
Food is-a Product”. Similarly, “Yoghurt is-a Dairy is-a 
Food is-a Product” (Fig. 2). 
 

 
Fig. 2. Example of a taxonomy. 

When a taxonomy about a domain of application is 
available, a number of usually high-confidence rules that 
are too specific (having low support) can be merged, 

creating a rule that aggregates the support and therefore 
the information, in a higher abstraction level, of the 
individual rules. In other words, “looser” associations at 
the lower levels of the taxonomy are summarized, 
producing “winner” associations of higher levels. For 
example, the rule WheatBread⇒ SkimmedMilk is very 
likely to have low support, while a rule Bread⇒ Milk is 
very possible that it has much higher support, because it 
includes all types, brands and packages of bread and milk 
bought by the customers of the store. This kind of 
association rule is referred to as multiple-level or 
generalized or hierarchical association rule. Several 
algorithms and approaches have been proposed so far and 
in all of them taxonomy information is always available 
or known in advance. However, this is not always the 
case and sometimes it would be useful if we had a serious 
hint regarding the existence of such information. 

In this paper we propose a simple method for 
extending frequent itemsets and collecting information in 
order to summarize frequent itemsets and discover 
possible taxonomy information over the dataset. We 
define the problem of mining contiguous frequent 
itemsets and present the results of our experiments on 
various synthetic datasets. Our goal is to assist the mining 
procedure with knowledge that can eventually be utilized 
to mine for stronger association rules. 

The rest of this paper is organized as follows. The 
next section contains a short review of the relative 
literature. Section 3 contains the description of the 
proposed approach, definitions of terms, notions used, 
and the proposed algorithm. In section 4 we present 
illustrative examples of our approach and results of our 
experiments. Finally, in section 5 we summarize with the 
conclusions we drew from this research and our ideas for 
future work on this topic. 
 

II. RELATED WORK 
 

Association rules were first introduced in 1993 by 
Agrawal et al. [1]. The first algorithms for the discovery 
of association rules, AIS [1] and SETM [2, 3] are not very 
efficient, since they generate a very large number of 
candidate frequent itemsets. In 1994 Agrawal and Srikant 
[4] proposed Apriori, an algorithm which outperforms 
AIS and SETM. Apriori exploits the downward closure 
property, according to which any non-empty subset of a 
frequent itemset is also frequent. Therefore, at each step 
the candidate frequent itemsets are generated based only 
on the frequent itemsets found in the previous step. About 
the same time Manilla et al. [5] discovered independently 
the same property and proposed a variation of Apriori, the 
OCD algorithm. A joint paper combining the previous 
two works was later published [6]. Several algorithms 
have been proposed since then, others improving the 
efficiency, such as FPGrowth [7], and others addressing 
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different problems from various application domains, 
such as spatial [8], temporal [9] and intertransactional 
rules [10].  

One of the major problems in association rule mining 
is the large number of often uninteresting rules extracted. 
Srikant and Agrawal [11] presented the problem of 
mining for generalized association rules, that utilize item 
taxonomies in order to discover more interesting rules. 
The authors propose a basic algorithm as well as some 
more efficient algorithms, along with a new interest 
measure for rules, which uses information in the 
taxonomy. Thomas and Sarawagi [12] propose a 
technique for mining generalized association rules based 
on SQL queries. Han and Fu [13] also describe the 
problem of mining “multiple-level” association rules, 
based on taxonomies and propose a set of top-down 
progressive deepening algorithms.  

Another category of association rules are negative 
association rules. Savasere et al. [14] introduced the 
problem of mining for negative associations. Negative 
associations deal with the problem of finding rules that 
imply what items are not likely to be purchased given that 
a certain set of items is purchased. Wu et al. [15] 
proposed an efficient method for mining both positive and 
negative associations. Finally, Teng [16] proposed a type 
of augmented association rules, using negative 
information called dissociations. A dissociation is a 
relationship of the form “A does not imply B”, but it could 
be that “when A appears together with C, this implies B”. 
 

III. OUR APPROACH 
 

Before the description of our approach it is essential to 
provide some definitions and formulate the problem of 
mining contiguous frequent itemsets. Let I be a finite set 
of items and D be a finite multiset of transactions. Each 
transaction T∈D is a set of items such that T⊆ I. Mining 
for frequent k-itemsets involves searching in a search 
space, which consists of all the possible combinations of 
length k of all items in I. Every frequent itemset F⊆ I 
divides the search space in two disjoint subspaces: the 
first consists of the transactions that contain F and from 
now on will be called the F-subspace and the second all 
the other transactions.  

In the next lines we define the problem of mining 
contiguous frequent itemsets. Now, let F⊆ I be a frequent 
itemset in D, according to a first-level support threshold 
and E⊆ I be another itemset. The itemset F∪E is 
considered to be a contiguous frequent itemset, if 
F∩E=∅  and E is frequent in the F-subspace, according 
to a second level support threshold. Itemset E is called the 
locally frequent extension of F. The term locally is used, 
because E may not be frequent in the whole set of 
transactions. In order to avoid any confusion, from now 
on we will use the terms local and locally, when we refer 

to a subset of D and the terms global and globally when 
we refer to D. For example, we call global support (gsup) 
the first-level support and local support (lsup) the second-
level support. An itemset F that satisfies the minimum 
global support threshold (min_gsup) is considered to be 
globally frequent and an itemset E that is frequent in the 
F-subspace, according to the minimum local support 
threshold (min_lsup), is considered to be locally frequent. 
The global support of an itemset can be calculated as in 
equation (1) and the local support of an itemset E in the 
F-subspace can be calculated as follows: 
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The local support threshold can be set arbitrarily by the 
user-expert or can be the same as the global support 
threshold. The contiguous frequent itemsets that contain a 
locally frequent extension of length k are called k-
contiguous frequent itemsets. 

Given a finite multiset of transactions D, the problem 
of mining contiguous frequent itemsets is to generate all 
itemsets F∪E that consist of an itemset F that has global 
support at least equal to the user-specified minimum 
global support threshold and an extension E that has local 
support at least equal to the user-specified minimum local 
support threshold. 

The importance of mining all contiguous frequent 
itemsets is summarized in the following two-fold 
intuition: First, if the extensions are frequent in the 
subspace of a frequent itemset then they could be 
important information about these itemsets, lost by a 
number of reasons. Second, if a large number of itemsets 
share the same extensions and these common extensions 
are frequent in the subspace of these itemsets, they are 
likely to be of the same category and the same level of 
taxonomy. In such cases, the total support of the father 
node in the taxonomy is broken down to many lower level 
supports, which are not high enough to satisfy the 
minimum support threshold and which explains the 
possible loss of potentially valuable knowledge. The 
support of the current itemset is reduced because of the 
low support of the extensions and eventually fails to 
qualify as a frequent itemset. When no taxonomy 
information is available in advance, the information 
gathered from this process can be a serious hint about the 
taxonomy effect explained before and eventually the 
existence of a taxonomy. 

At this point some remarks have to be noted.  From 
equations (2) and (3) is shown that the local support of an 
itemset B in the A-subspace is similar to the confidence of 
the rule A⇒ B. Someone, based on this observation, could 
argue that association rules include the knowledge 
exposed by contiguous frequent itemsets and 
consequently contiguous frequent itemsets are useless. 
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However, this is not true even if part of the knowledge 
encapsulated in a contiguous frequent itemset F∪E is 
also included in the association rule F⇒ E. Using 
classical association rule mining approaches this rule is 
not generally discovered, since itemset F∪E is not 
always (globally) frequent. If the minimum support 
threshold is set very low so that the above rule can be 
mined, then many uninteresting rules will also be mined. 
For example, let the minimum global support threshold is 
set to 0.2 and the minimum local support threshold is set 
to 0.3. In order to mine all the association rules A⇒ B 
related to the contiguous frequent itemset A∪B the 
minimum support threshold has to be set to 0.06 
(0.2∗0.3), which is a significantly low value.  

Another notable remark is that a frequent itemset 
represents a class of consumers that have particular 
preferences. For example, the frequent itemset 
A={Diapers, Milk} is very likely to represent parents that 
have a baby. The use of traditional association rules do 
not provide the alternative to explore the subset of 
transactions that contain A and consequently a large 
amount of potentially valuable knowledge remains 
hidden. Conversely, the contiguous frequent itemsets that 
contain A, reveal the hidden knowledge and is possible to 
generate more specific rules, that are interesting inside the 
A-subspace. Returning to the example, let consider 
itemset B = {NursingBottle, NursingBottleBrash}. It is 
very likely that B has very low global support, since 
someone does not often purchase nursing bottle and 
nursing bottle brash. But when we consider the customers 
who have a baby, it is much more likely to find these two 
products in their baskets. If this is the case, then B would 
be locally frequent in A-subspace. Moreover, the 
following rule NursingBottle⇒ NursingBottleBrash could 
be found that is very interesting (has high confidence) in 
the A-subspace. This knowledge can not be directly 
discovered by association rule mining. 

We have implemented a level-wise algorithm in order 
to extract the k-contiguous frequent itemsets. The level-
wise algorithm works in two steps: 
1. All globally frequent itemsets are found according to 

a minimum global support threshold. Any frequent 
itemset mining algorithm can be used, to find them. 

2. For each globally frequent itemset F, its subspace is 
mined for locally frequent itemsets, according to a 
local support threshold. Each locally frequent itemset 
E is the locally frequent extension of F. 

Step 2 requires a number of scans over the database, 
which is proportional to the size of the extensions 
discovered. In the case of the basic Apriori algorithm the 
number of scans is equal to the size of the itemsets, but 
there are some improvements in later versions that require 
less scans and they are more efficient. Moreover, 
algorithm in step 2 generates the k-extensions in a level-
wise manner. This means that first all the 1-extensions for 

each frequent itemset will be mined, next all the 2-
extensions, etc. Thus the algorithm can be stopped at any 
level, producing the contiguous frequent itemsets so far 
discovered. This can be used when the user is only 
interested in small extensions (i.e. of size 1 or 2) or in 
extreme cases when the algorithm takes too much time to 
terminate and an output is required quickly. The basic 
module of our algorithm is outlined in Table I. 
 

TABLE I 
THE CONTIGUOUS FREQUENT ITEMSET MINING FUNCTION. 

Input: A multiset of transactions D, a minimum local support 
threshold min_lsup and a maximum extension size threshold 
max_ext. 
Output: All k-contiguous frequent itemsets, where  k ranges 
from 1 to max_ext. 
MINE_CFI(D, min_lsup, max_ext) 
(1) FC1 ← {1-contiguous frequent itemsets} 
(2) k← 2 
(3) while (FCk-1 ≠∅  and k ≤ max_ext) do 
(4)      Ck← GENERATE(FCk-1) 
(5)      FCk ←∅  
(6)      for each C∈Ck do 
(7)           for each E ∈ EXT(C) do 
(8)                COUNT(E) ← 0 
(9)      for each T ∈D do 
(10)           for each C∈Ck do 
(11)                if (FREQ(C)⊂ T) then 
(12)                     for each E ∈ EXT(C) do 
(13)                          if (E⊂ T-FREQ(C)) then 
(14)                               COUNT(E) ← COUNT(E) + 1 
(15)      for each C∈Ck do 
(16)           min_lcount = min_lsup ∗ COUNT(FREQ(C)) 
(17)          E ′ ← {E∈ EXT(C)| COUNT(E) ≥ min_lcount} 
(18)           if ( E ′ ≠ ∅ ) then 
(19)                FCk ← FCk ∪ {(FREQ(C), E ′ )} 
(20)      k← k + 1 

(21) return 
1

1

k

i
i

FC
−

=
∪  

 
Function GENERATE (line 4) generates the candidate 

locally frequent extensions for each frequent itemset, in 
the same manner as in Apriori [4]. The set of candidates 
at level k is based on the contiguous frequent itemsets 
FCk-1 discovered in the step k-1. A contiguous frequent 
itemset is represented as a pair (F, E), where F is the 
globally frequent itemset and E is the locally frequent 
extension. Functions FREQ and EXT are used to access F 
and E, respectively. All 1-contiguous frequent itemsets 
(line 1) are generated by the function outlined in Table II. 
The function works by reading one transaction at the 
time. For each frequent itemset contained in a transaction 
the remaining items in the transaction are considered as 
candidate frequent extensions and their occurrences are 
counted. Finally, function COUNT is used to access the 
frequency (number of occurrences) of an itemset. 
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TABLE II 
THE 1-CONTIGUOUS FREQUENT ITEMSET MINING FUNCTION. 

Input: A multiset of transactions D, a set of frequent itemsets
FD and a minimum local support threshold min_lsup. 
Output: All 1-contiguous frequent itemsets. 
MINE_1-CFI (D, FD, min_lsup) 
(1) C1 ←∅  
(2) FC1 ←∅  
(3) for each F∈ FD do 
(4)      C1 ← C1 ∪ {(F, ∅ )} 
(5) for each T∈D do 
(6)      for each C∈C1 do 
(7)           if (FREQ(C)⊂ T) then 
(8)                for each I∈ T-FREQ(C) do 
(9)                     if (I∈ EXT(C)) then 
(10)                          COUNT(I) ← COUNT(I) + 1 
(11)                     else 
(12)                          EXT(C) ← EXT(C)∪ {I} 
(13)                          COUNT(I) ← 1 
(14) for each C∈C1 do 
(15)      min_lcount = min_lsup ∗ COUNT(FREQ(C)) 
(16)     E ′ ← {E∈ EXT(C)| COUNT(E) ≥ min_lcount} 
(17)      if ( E′ ≠ ∅ ) then 
(18)           FC1 ← FC1 ∪ {(FREQ(C), E ′ )} 
(19) return FC1 
 

IV. EXPERIMENTS 
 

We illustrate our approach using an example dataset 
shown in Table III. The dataset contains 6 transactions 
and 13 different items. The items have been replaced by 
integers and with each transaction is associated a 
transaction ID (TID).  
 

TABLE III 
 EXAMPLE OF A MARKET BASKET DATASET. 

TID Items 
1 1, 3, 4, 2 
2 5, 6, 2, 7, 1 
3 8, 9, 10, 1, 2, 3 
4 5, 11, 12 
5 13, 1, 2 
6 5, 11, 1, 7, 3 
 

Applying our algorithm with minimum global support 
threshold min_gsup = 0.6 and minimum local support 
threshold min_lsup = 0.4 we discover the contiguous 
frequent itemsets listed in Table . The frequent itemsets 
and the locally frequent extensions that constitute each 
contiguous frequent itemset along with their 
corresponding supports are presented. 

From Table IV we can see that frequent itemset {1,2} 
is extended by itemset {3}, with local support 0.5. 
Moreover, we observe that ten contiguous frequent 
itemsets have been produced in total. Three of them are 2-
contiguous frequent itemsets ({1}∪ {2,3}, {1}∪ {5,7} 

and {2}∪ {1,3}) and all the others are 1-contiguous 
frequent itemsets. According to set theory, itemset 
{1}∪ {2,3} is equal to itemset {2}∪ {1,3}. However, if 
these two itemsets are considered as contiguous frequent 
itemsets, they are different. The first ({1}∪ {2,3}) means 
that itemset {2,3} is a frequent extension of the frequent 
itemset {1}, while the second ({2}∪ {1,3}) means that 
itemset {1,3} is a frequent extension of the frequent 
itemset {2}. The following observation clarifies more the 
difference between the two itemsets. If, for example, we 
had set min_lsup equal to 0.5, then the first itemset would 
not have been mined. Similarly, if we had set min_gsup 
equal to 0.8, then the second one would not have been 
discovered. 
 

TABLE IV 
CONTIGUOUS FREQUENT ITEMSETS MINED FROM  DATASET 

LISTED IN TABLE III (MIN_GSUP = 0.6, MIN_LSUP = 0.4). 

Frequent Itemsets Extensions 
Itemset Global Support Itemset Local Support

{2} 0.8 
{3} 0.6 
{5} 0.4 
{7} 0.4 
{2,3} 0.4 

{1} 0.83 

{5,7} 0.4 
{1} 1 
{3} 0.5 {2} 0.67 
{1,3} 0.5 

{1,2} 0.67 {3} 0.5 
 
The graphical user interface in Fig. 3 allows for 

setting three mining parameters (global support, local 
support and maximum extension size) and displays the 
results using a tree structure. 
 

 
Fig. 3. Contiguous frequent itemset miner interface. 

Another illustrative example of the use of our 
algorithm follows. Table V contains an example market 
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basket dataset and Table VI shows the discovered 
association rules. The minimum support and minimum 
confidence thresholds were set to 2/9 and 2/3 respectively 
in order to extract these rules. After applying our 
algorithm, we discovered the contiguous frequent itemsets 
shown in Table VII, along with their supports. They are 
all 1-contiguous frequent itemsets of the frequent 1-
itemset {sugar} and the locally frequent extensions are all 
different types of coffee (espresso, cappuccino and 
decaffeinated). We observe that the above extensions are 
never contained in the same transaction. This observation 
strengthens the possibility for these items to be members 
of the same category (i.e. the category coffee). 

 
TABLE V 

AN EXAMPLE MARKET BASKET DATASET. 

TID Items in the Basket 
1 espresso, sugar, newspaper 
2 espresso, sugar, cola 
3 espresso, sugar 
4 cappuccino, cigarettes 
5 cappuccino, sugar 
6 cappuccino, sugar, sweets 
7 decaf, sugar, chewing_gums 
8 decaf, soda, vinegar 
9 decaf, sugar, cigarettes 

 
TABLE VI 

ASSOCIATION RULES MINED FROM THE DATASET OF TABLE V. 

Association Rules Support Confidence
espresso⇒ sugar 3/9 1 
decaf⇒ sugar 2/9 2/3 
cappuccino⇒ sugar 2/9 2/3 

 
TABLE VII 

CONTIGUOUS FREQUENT ITEMSETS MINED FROM DATASET LISTED 
IN TABLE V (MIN_GSUP = 7/9, MIN_LSUP = 2/7). 

Frequent Itemsets Extensions 
Itemset Global Support Itemset Local Support

{espresso} 3/7 
{cappuccino} 2/7 {sugar} 7/9 
{decaf} 2/7 

 
The possible taxonomy derived by this analysis is 
depicted in Fig. 4. When we replaced these items with a 
single item named coffee, we were able to increase the 
minimum support threshold in order to acquire stronger 
association rules. (Table VIII). 
 

 
Fig. 4. A taxonomy of coffee products. 

TABLE VIII 

ASSOCIATION RULES MINED FROM THE DATASET OF TABLE V 
AFTER REPLACING THE THREE TYPES OF COFFEE BY ONE ITEM. 

Association Rules Support Confidence
coffee ⇒  sugar 7/9 7/9 
sugar ⇒  coffee 7/9 1 

 
In order to evaluate the performance of our algorithm 

we conducted a number of experiments on synthetic data. 
We used a market basket dataset that contains 500 
transactions. The average number of items contained in a 
transaction is 20, while the variance is ± 15 items. The 
above dataset is available in the Web [17]. The graph in 
Fig. 5 illustrates the performance of our algorithm in 
means of response time (milliseconds) while the 
minimum global support threshold (min_gsup) varies 
from 0.04 down to 0.01. The minimum local support 
threshold was set to 0.3. We observe that while the 
min_gsup decreases, the response time of the algorithm 
increases. This is expected, since lower values of 
min_gsup result more frequent itemsets to be discovered 
and consequently  more possible extensions. 
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Fig. 5. Response time of our algorithm. 

 
V. CONCLUSIONS 

 
In this paper we presented the novel problem for 

mining contiguous frequent itemsets, as an extension to 
the association rule mining paradigm. Contiguous 
frequent itemsets may contain important knowledge about 
the dataset that is not included in the traditional 
association rules. Moreover, contiguous frequent itemsets 
provide important information to the domain expert for 
the construction of a taxonomy. For this purpose, we 
developed a level-wise algorithm and we applied it on a 
number of synthetic datasets in order to be tested for its 
validity and performance. It is within our current plans to 
apply it on a number of real world datasets as well as to 
improve it in terms of speed and memory management.  
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